Lowest Price

tel +91-9259870006, +91-9528193890
Mail -Fcagupta@gmail.com

Solar Panel all details types and meaning

author
2 minutes, 8 seconds Read
Solar Panel all details types and meaning Solar panel efficiency is a measure of the amount of sunlight (irradiation) that falls on the surface of a solar panel and is converted into electricity. Due to the many advances in photovoltaic technology over recent years, the average panel conversion efficiency has increased from 15% to well over 22%. This large jump in efficiency resulted in the power rating of a standard-size panel increasing from 250W to over 420W.

.

As explained below, solar panel efficiency is determined by two main factors; the photovoltaic (PV) cell efficiency, based on the cell design and silicon type, and the total panel efficiency, based on the cell layout, configuration and panel size. Increasing the panel size can also increase efficiency due to creating a larger surface area to capture sunlight, with the most powerful solar panels now achieving up to 700W power ratings.

 

Cell Efficiency

Cell efficiency is determined by the cell structure and type of substrate used, which is generally either P-type or N-type silicon. Cell efficiency is calculated by what is known as the fill factor (FF), which is the maximum conversion efficiency of a PV cell at the optimum operating voltage and current. Note cell efficiency should not be confused with panel efficiency. The panel efficiency is always lower due to the internal cell gaps and frame structure included in the panel area. See further details below.

 

The cell design plays a significant role in panel efficiency. Key features include the silicon type, busbar configuration, junction and passivation type (PERC). Panels built using Back-contact (IBC) cells are currently the most efficient (up to 23.8%) due to the high purity N-type silicon substrate and no losses from busbar shading. However, panels developed using the latest N-Type TOPcon, and advanced heterojunction (HJT) cells have achieved efficiency levels well above 22%. Ultra-high efficiency Tandem Perovskite cells are still in development but are expected to become commercially viable within the next two years. For a deeper technical insight, Progress in Photovoltaics publishes listings of the latest photovoltaic cell technologies twice a year.

 


Efficiency of panels using different cell types

  • Polycrystalline – 15 to 18%

  • Monocrystalline – 16.5 to 19%

  • Polycrystalline PERC – 17 to 19.5%

  • Monocrystalline PERC – 17.5 to 20%

  • Monocrystalline N-type – 19 to 20.5%

  • Monocrystalline N-type TOPcon – 21 to 22.6%

  • Monocrystalline N-type HJT – 21.2 to 22.8%

  • Monocrystalline N-type IBC – 21.5 to 23.6% **

** Several new variations of Interdigitated Back Contact (IBC) cell architectures have emerged, of which the exact cell construction has not been fully disclosed. This includes LONGi Solar’s Hybrid Passivated Back Contact (HPBC) technology and Aiko Solar’s ABC (All Back Contact) cell technology.